February 12, 2013 Volume 09 Issue 06

Motion Control News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Overhung load adaptors provide load support and contamination protection

Overhung load adaptors (OHLA) provide both overhung radial and axial load support to protect electrified mobile equipment motors from heavy application loads, extending the lifetime of the motor and alleviating the cost of downtime both from maintenance costs and loss of production. They seal out dirt, grime, and other contaminants too. Zero-Max OHLAs are available in an extensive offering of standard models (including Extra-Duty options) for typical applications or customized designs.
Learn more.


Why choose electric for linear actuators?

Tolomatic has been delivering a new type of linear motion technology that is giving hydraulics a run for its money. Learn the benefits of electric linear motion systems, the iceberg principle showing total cost of ownership, critical parameters of sizing, and conversion tips.
Get this informative e-book. (No registration required)


New AC hypoid inverter-duty gearmotors

Bodine Electric Company introduces 12 new AC inverter-duty hypoid hollow shaft gearmotors. These type 42R-25H2 and 42R-30H3 drives combine an all-new AC inverter-duty, 230/460-VAC motor with two hypoid gearheads. When used with an AC inverter (VFD) control, these units deliver maintenance-free and reliable high-torque output. They are ideal for conveyors, gates, packaging, and other industrial automation equipment that demands both high torque and low power consumption from the driving gearmotor.
Learn more.


Next-gen warehouse automation: Siemens, Universal Robots, and Zivid partner up

Universal Robots, Siemens, and Zivid have created a new solution combining UR's cobot arms with Siemens' SIMATIC Robot Pick AI software and Zivid's 3D sensors to create a deep-learning picking solution for warehouse automation and intra-logistics fulfillment. It works regardless of object shape, size, opacity, or transparency and is a significant leap in solving the complex challenges faced by the logistics and e-commerce sectors.
Read the full article.


Innovative DuoDrive gear and motor unit is UL/CSA certified

The DuoDrive integrated gear unit and motor from NORD DRIVE-SYSTEMS is a compact, high-efficiency solution engineered for users in the fields of intralogistics, pharmaceutical, and the food and beverage industries. This drive combines a IE5+ synchronous motor and single-stage helical gear unit into one compact housing with a smooth, easy-to-clean surface. It has a system efficiency up to 92% and is available in two case sizes with a power range of 0.5 to 4.0 hp.
Learn more.


BLDC flat motor with high output torque and speed reduction

Portescap's 60ECF brushless DC slotted flat motor is the newest frame size to join its flat motor portfolio. This 60-mm BLDC motor features a 38.2-mm body length and an outer-rotor slotted configuration with an open-body design, allowing it to deliver improved heat management in a compact package. Combined with Portescap gearheads, it delivers extremely high output torque and speed reduction. Available in both sensored and sensorless options. A great choice for applications such as electric grippers and exoskeletons, eVTOLs, and surgical robots.
Learn more and view all the specs.


Application story: Complete gearbox and coupling assembly for actuator system

Learn how GAM engineers not only sized and selected the appropriate gear reducers and couplings required to drive two ball screws in unison using a single motor, but how they also designed the mounting adapters necessary to complete the system. One-stop shopping eliminated unnecessary components and resulted in a 15% reduction in system cost.
Read this informative GAM blog.


Next-gen motor for pump and fan applications

The next evolution of the award-winning Aircore EC motor from Infinitum is a high-efficiency system designed to power commercial and industrial applications such as HVAC fans, pumps, and data centers with less energy consumption, reduced emissions, and reduced waste. It features an integrated variable frequency drive and delivers upward of 93% system efficiency, as well as class-leading power and torque density in a low-footprint package that is 20% lighter than the previous version. Four sizes available.
Learn more.


Telescoping linear actuators for space-constrained applications

Rollon's new TLS telescoping linear actuators enable long stroke lengths with minimal closed lengths, which is especially good for applications with minimal vertical clearance. These actuators integrate seamlessly into multi-axis systems and are available in two- or three-stage versions. Equipped with a built-in automated lubrication system, the TLS Series features a synchronized drive system, requiring only a single motor to achieve motion. Four sizes (100, 230, 280, and 360) with up to 3,000-mm stroke length.
Learn more.


Competitively priced long-stroke parallel gripper

The DHPL from Festo is a new generation of pneumatic long-stroke grippers that offers a host of advantages for high-load and high-torque applications. It is interchangeable with competitive long-stroke grippers and provides the added benefits of lighter weight, higher precision, and no maintenance. It is ideal for gripping larger items, including stacking boxes, gripping shaped parts, and keeping bags open. It has high repetition accuracy due to three rugged guide rods and a rack-and-pinion design.
Learn more.


Extend your range of motion: Controllers for mini motors

FAULHABER has added another extremely compact Motion Controller without housing to its product range. The new MC3603 controller is ideal for integration in equipment manufacturing and medical tech applications. With 36 V and 3 A (peak current 9 A), it covers the power range up to 100 W and is suitable for DC motors with encoder, brushless drives, or linear motors.
Learn more.


When is a frameless brushless DC motor the right choice?

Frameless BLDC motors fit easily into small, compact machines that require high precision, high torque, and high efficiency, such as robotic applications where a mix of low weight and inertia is critical. Learn from the experts at SDP/SI how these motors can replace heavier, less efficient hydraulic components by decreasing operating and maintenance costs. These motors are also more environmentally friendly than others.
View the video.


Tiny and smart: Step motor with closed-loop control

Nanotec's new PD1-C step motor features an integrated controller and absolute encoder with closed-loop control. With a flange size of merely 28 mm (NEMA 11), this compact motor reaches a max holding torque of 18 Ncm and a peak current of 3 A. Three motor versions are available: IP20 protection, IP65 protection, and a motor with open housing that can be modified with custom connectors. Ideal for applications with space constraints, effectively reducing both wiring complexity and installation costs.
Learn more.


Closed loop steppers drive new motion control applications

According to the motion experts at Performance Motion Devices, when it comes to step motors, the drive technique called closed loop stepper is making everything old new again and driving a burst of interest in the use of two-phase step motors. It's "winning back machine designers who may have relegated step motors to the category of low cost but low performance."
Read this informative Performance Motion Devices article.


Intelligent compact drives with extended fieldbus options

The intelligent PD6 compact drives from Nanotec are now available with Profinet and EtherNet/IP. They combine motor, controller, and encoder in a space-saving package. With its 80-mm flange and a rated power of 942 W, the PD6-EB is the most powerful brushless DC motor of this product family. The stepper motor version has an 86-mm flange (NEMA 34) and a holding torque up to 10 Nm. Features include acceleration feed forward and jerk-limited ramps. Reduced installation time and wiring make the PD6 series a highly profitable choice for machine tools, packaging machines, or conveyor belts.
Learn more.


NASA's successful robotic refueling demo points to a bright satellite-servicing future

By Adrienne Alessandro, NASA's Goddard Space Flight Center

Following six historic days of operations aboard the International Space Station, NASA's Robotic Refueling Mission, or RRM, demonstrated remotely controlled robots using current-day technology could refuel satellites not designed to be serviced.

RRM tests from January 14-25 culminated in a first-of-its-kind robotic fluid transfer, a demonstration that could be a catalyst to expanded robotic satellite-servicing capabilities and lead to a greener, more sustainable space. NASA also hopes that RRM technologies may help boost the commercial satellite-servicing industry.

The Robotic Refueling Mission, or RRM, investigation (center, on platform) uses the International Space Station's Canadarm2 and the Canadian Dextre robot (right) to demonstrate satellite-servicing tasks. [Image: NASA]

 

 

 

 

"RRM gives NASA and the emerging commercial satellite servicing industry the confidence to robotically refuel, repair, and maintain satellites in both near and distant orbits -- well beyond the reach of where humans can go today," says Frank Cepollina, associate director of the Satellite Servicing Capabilities Office, or SSCO at NASA's Goddard Space Flight Center in Greenbelt, MD.

New technologies for a new industry
Since 2009, SSCO has aggressively advanced robotic technologies for a notional, free-flying, servicer spacecraft that could access, repair, and refuel satellites in geosynchronous Earth orbit, or GEO. RRM is a critical part of this technology development campaign.

"RRM allows us to take a major step into the future -- a future where humans and machines can together take on greatly expanded roles in space capability, research, and exploration," Cepollina says.

Veterans of five manned servicing missions to NASA's Hubble Space Telescope, Cepollina, and the SSCO team conceived the idea of RRM and saw it through its rapid 18-month development to its July 2011 launch on STS-135, the last space shuttle mission. A joint effort with the Canadian Space Agency, RRM uses the space station as test bed for the research and development of robotic satellite-servicing capabilities.

The cutting-edge technologies RRM demonstrates could extend the lives of many of the hundreds of satellites currently in GEO. These assets deliver such essential services as weather reports, cell phone communications, television broadcasts, government communications, and air traffic management.

Servicing capabilities could greatly expand options for government and commercial fleet operators in the future, potentially delivering stakeholders significant savings in spacecraft replacement and launch costs.

RRM: A first-of-its-kind refueling
The January RRM activities employed the teleoperated Canadian Dextre robot, four sophisticated RRM tools, and the washing-machine-size RRM module to execute an end-to-end refueling demonstration on orbit. Unlike other demos, RRM is the first to test the robotic refueling of satellite interfaces not designed to be accessed or serviced.

Stray drops of ethanol remain on the RRM Nozzle Tool after it withdraws from the fuel valve and the newly attached "quick disconnect" fitting. [Image: NASA]

 

 

Robot controllers at NASA's Johnson Space Center in Houston first commanded an RRM tool -- working at the end of more than 70 ft (21.34 m) of combined Dextre and Canadarm2 robotics -- to cut a pair of twisted wires each 0.02 in. in diameter, the thickness of four sheets of paper. Additional exacting tasks followed, with RRM tools cutting more wire -- used to secure satellite parts during launch -- and unscrewing and stowing two protective caps before finally exposing the representative fuel valve.

After the Johnson team threaded the RRM Nozzle tool with its attached hose onto the valve, operators at NASA's Marshall Space Flight Center in Huntsville, AL, sent a precise sequence of commands to activate the RRM Fluid Transfer System. Liquid ethanol flowed from the Fluid Transfer System into the Nozzle Tool and through the attached fuel valve, ultimately pulsing back into the module's reservoir. Once the fluid transfer was complete, the Nozzle Tool used a novel technique to withdraw from the valve, leaving behind a clever "quick disconnect" fitting that would allow for a simpler and more efficient future refueling connection.

Future RRM tasks scheduled for 2013 include thermal blanket cutting, fastener removals, and electronic termination cap removals: all firsts of their kinds. A new round of servicing task boards, tools, and activities are slated to continue its investigations through 2015.

Results straight from space
Results of RRM operations show that current-day robotic technology can refuel the common, triple-sealed satellite fuel valves of orbiting satellites. "The RRM tools, technologies, and techniques passed their tests with flying colors," says SSCO deputy project manager Benjamin Reed. "We are immensely pleased with its success and very grateful to our partner the Canadian Space Agency."

The team's excitement in completing the task was heightened by the treasury of experience and insight gained from the exercise.

"Nothing compares to seeing how your hardware and procedures work in a real space environment," says Reed. "This is the beauty of being able to test new, game-changing technologies on the International Space Station."

"It is direct evidence that we are not working blindly in the proverbial vacuum, but rather that our carefully planned work at Goddard accurately simulates the real environment of space," Reed says.

SSCO plans to present RRM results to date at the upcoming Satellite 2013 conference, as well as during space station panels and other events.

What's next?
NASA continues to test capabilities for a new robotic servicing frontier. In conjunction with RRM, the SSCO team has been studying a conceptual servicing mission and building technologies to address uncharted territory. They include an autonomous rendezvous-and-capture system, a propellant transfer system for zero gravity, and specialized algorithms to orchestrate and synchronize satellite-servicing operations.

On Jan. 15, NASA released a Request for Information to seek input on a potential public-private partnership to effect the full utilization of NASA-developed technology through an end-to-end technology demonstration of a satellite-servicing capability for client satellites located in GEO. The conceptual Restore Mission would potentially perform servicing operations in orbit in the 2018-2023 timeframe. RRM is proving the technology to achieve such a future mission.

"RRM is a harbinger of the next era in satellite fleet operations," Reed says. "It disrupts the accepted paradigm that a GEO satellite must be decommissioned at the end of its propellant reserves. Nearly 50 years of common practice is challenged with the options that RRM proves and foreshadows."

Published February 2013

Rate this article

[NASA's successful robotic refueling demo points to a bright satellite-servicing future]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2013 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy